An Algorithm to Decompose Permutation Representations of Finite Groups: Polynomial Algebra Approach
نویسنده
چکیده
We describe an algorithm for splitting a permutation representation of a finite group into irreducible components. The algorithm is based on the fact that the components of the invariant inner product in invariant subspaces are operators of projection into these subspaces. An important element of the algorithm is the calculation of Gröbner bases of polynomial ideals. A preliminary implementation of the algorithm splits representations up to dimensions of several thousand. Some examples of computations are given in Appendix A.
منابع مشابه
Notes on representations of finite groups
1 Basic notions 4 1.1 ⊕, ⊗ and Hom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Invariant vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Invariant subspaces and irreducible representations . . . . . . . . . . . . . . . . . . . 5 1.4 The group algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملGroups with Two Extreme Character Degrees and their Minimal Faithful Representations
for a finite group G, we denote by p(G) the minimal degree of faithful permutation representations of G, and denote by c(G), the minimal degree of faithful representation of G by quasi-permutation matrices over the complex field C. In this paper we will assume that, G is a p-group of exponent p and class 2, where p is prime and cd(G) = {1, |G : Z(G)|^1/2}. Then we will s...
متن کاملOn the Mark and Markaracter Tables of Finite Groups
Let G be a finite group and C(G) be the family of representative conjugacy classes of subgroups of G. The matrix whose H,K-entry is the number of fixed points of the set G/K under the action of H is called the table of marks of G where H,K run through all elements in C(G). Shinsaku Fujita for the first time introduced the term “markaracter” to discuss marks for permutation representati...
متن کاملPermutation Groups, a Related Algebra and a Conjecture of Cameron
We consider the permutation group algebra defined by Cameron and show that if the permutation group has no finite orbits, then no homogeneous element of degree one is a zero-divisor of the algebra. We proceed to make a conjecture which would show that the algebra is an integral domain if, in addition, the group is oligomorphic. We go on to show that this conjecture is true in certain special ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.09786 شماره
صفحات -
تاریخ انتشار 2018